Physics

LAB #10: NEWTON'S 2ND LAW

Name:

D

Date:

Verifying Newton's 2nd Law

Lab #10

<u>Pre-Lab Discussion</u>: Using a pulley and an air cart, we can use different masses to accelerate a cart. By measuring the accelerations caused by a range of masses. It should be able to confirm Newton's second law of motion, F = ma. Since the mass of the tart (m_{cart}) is a constant (k), the ratio of the force used to pull the cart (F_{\parallel}) and the acceleration of the cart (a_{eq}) should be a constant:

cart

Materials:

 a_{cart}

hook

masses (10, 20, 30 g)

Method:

- 1. Adjust the air track so that the cart remains stationary.
- 2. Add a 20. g hook to accelerate the cart. (Note the m_{\parallel} has already been entered in the data table.)
- 3. Record the acceleration of the cart using a stopwatch or an iPhone to take a movie.
- 4. Scan the movie to determine both the time and the distance the cart travels.

ramp

- 5. Calculate the acceleration *of the cart*. Fill in the data and results chart. $(F_{\parallel} = mg)$
- 6. Add 10. g to the hook and repeat 1-4. Do this for 30 g, 40 g, and 50 g total mass.

Data and Processing: Record data and results on the table below:

Data and Results Table							
Mass $(m_p \text{ in } \mathrm{kg})$	Distance $(\Delta d \text{ in m})$	Time $(\Delta t \text{ in s})$	a_{cart} (m/s ²)	Weight $(F_{\parallel} \text{ in } N)$	$\frac{F_{\parallel}}{a_{\text{cart}}}$		
0.0200							
0.0300							
0.0400							
0.0500							

Calculations:

As example calculations, use the data for the 20. g hook and show how to calculate:

 $\Delta v_{\rm cart}$

 $a_{\rm cart}$

 F_{\parallel}

 a_{cart}

Conclusions:

- 1. Calculate the average value for $\frac{F_{\parallel}}{a_{\text{cart}}}$.
- 2. Calculate the percent difference between the average value for $\frac{F_{\parallel}}{a_{cart}}$ and the values for $\frac{F_{\parallel}}{a_{cart}}$ in each trial. Show the calculation of % error for trial 1 in the space below.
- 3. Did your data validate Newton's 2nd Law of Motion? Explain your answer.

4. How could this lab procedure be improved?

Applications:

1. What did you, *personally*, learn from this lab.

2. By whom and how can any idea, principle, or activity in this lab be used in the real world?