Topic 2: Measuring Earth

Topic 2 Section 1

Overview: consistent methods of locating positions on Earth (latitude, longitude, and more recently GPS) allow for accurate and reproducible boundaries for ownership and knowledge of landforms to help understand the best use of land resources

Size and Shape of Earth

The Earth is very close to a perfect sphere - too close for the human eye to detect deviation
Equatorial diameter $=12756 \mathrm{~km}$
Polar diameter $=\quad 12714 \mathrm{~km} \quad$ (a 0.3% deviation)
Earth is often represented by a globe (a globe is therefore a model of the Earth)
Model - a way to represent the properties of an object or system
Examples of models: globe, diagram, chart, table, or mathematical equation
Evidence of Earth's shape
Ships appear to be cut off as they sail over the horizon Pictures of Earth taken from space

Acceleration of gravity is a constant at sea level all around the Earth (and varies only very slightly from sea level $\left(9.8066 \mathrm{~m} / \mathrm{s}^{2}\right)$ to the highest elevation $\left(9.7795 \mathrm{~m} / \mathrm{s}^{2},-0.3 \%\right.$ deviation)
Spheres of Earth
The Earth is composed of a series of spheres held together by gravity

- the lowest density sphere will the outer edge of Earth's atmosphere
- the highest density sphere will sink to the center (Earth's core)

Topic 2: Measuring Earth

Outer spheres of the Earth (from outermost sphere to the center of the Earth)
Atmosphere
The atmosphere is the outermost sphere of the Earth because it has the lowest density

Thermosphere
Mesopause
Mesosphere
Stratopause
Stratosphere
Tropopause
Troposphere
outermost layer - 80 to 120 km
boundary between the mesosphere and the thermosphere about 50 to 80 km boundary between the stratosphere and the mesosphere about 12 km to 50 km
boundary between the troposphere and the stratosphere 0 to about 12 km

Physical Setting/Earth Science Reference Tables - 2011 Edition page 10
The dried and filtered atmosphere is composed of
78% nitrogen
21% oxygen
0.9\% argon
0.04% carbon dioxide
Before drying and filtering, the air contains water vapor and suspended particles
Hydrosphere - Earth's liquid layer of water
About 70% of Earth's surface is covered by water which is mostly hydrogen and oxygen
Earth's Interior (from outermost sphere to the center of the Earth)
Lithosphere - Earth's rocky layer at the top of its interior
The lithosphere lies directly beneath the hydrosphere or the atmosphere
The lithosphere is approximately 100 km thick
The lithosphere is divided into sections called lithospheric plates
The upper portion of the lithosphere is the crust

Topic 2: Measuring Earth

Geosphere - the region extending from Earth's rocky layer to the center of the Earth Inferred Properties of Earth's Interior

Physical Setting/Earth Science Reference Tables - 2011 Edition page 14

Topic 2: Measuring Earth

Topic 2 Section 2

Locating positions on Earth:
Coordinate system - a method used to determine a specific location using two numbers
On Earth, the latitude-longitude system is the coordinate system used to determine location
The angular units used are degrees $\left({ }^{\circ}\right)$, minutes $\left({ }^{\prime}\right)$, and seconds (${ }^{\prime \prime}$)
A circle $=360^{\circ}$
$1^{\circ}=60^{\prime}$
$1^{\prime}=60^{\prime \prime}$

Latitude - the angular distance north or south of the equator
Equator - marks the middle location exactly between the North and South Poles
Equator $=0^{\circ}$ North Pole $=90^{\circ} \mathrm{N} \quad$ South Pole $=90^{\circ} \mathrm{S}$
The angle from a line drawn from the center of the Earth to any point on Earth and the plane of the equator will equal the latitude of that point
All points that have the same latitude lie on a circle that is parallel to the equator
These circles are called parallels of latitude or just parallels
Measuring latitude
In the Northern Hemisphere, the altitude of the North Star or Polaris at any position should be the same as the latitude of that position
A sextant is used to measure the altitude of an object (usually a star) in the sky
Longitude - the angular distance east or west of the prime meridian
A semi-circle on Earth's surface that connects the North and South Poles is called a meridian of longitude or meridian
The meridian that passes through Greenwich, England is the prime meridian or 0° longitude

Meridians measure from 0° to 180° either east or west
Meridians to the west of the prime meridian are measured as negative or written with a W (west) designation
The 180° meridian roughly follows the International Date Line
The position for Faith Heritage School is $42^{\circ} 0^{\prime} 10^{\prime \prime} \mathrm{N}$ and $-76^{\circ} 8^{\prime} 52^{\prime \prime}$ or $76^{\circ} 8^{\prime} 52^{\prime \prime} \mathrm{W}$ Measuring longitude
Longitude is measured by comparing the time local noon occurs (when the sun is directly overhead) to the time of local noon at the prime meridian
360° around the planet divided by 24 hours in a day works out to 15° per hour
Local noon in New York State (which is west of Greenwich) occurs at 5:00 p.m. in
Greenwich, England
$5 \mathrm{hr} \times 15^{\circ} / \mathrm{hr}=75^{\circ} \mathrm{W}$

Topic 2: Measuring Earth

Find the position of Syracuse, NY

Physical Setting/Earth Science Reference Tables - 2011 Edition page 3
By using a ruler and connecting the latitude and longitude crosses on the map in the ESRT, Syracuse, NY is at approximately $43^{\circ} 8^{\prime} \mathrm{N}$ and $76^{\circ} 10^{\prime} \mathrm{W}$

Topic 2: Measuring Earth

Topic 2 Section 3
Field - any region of space or the environment that has a measurable value at every point Examples: wind speed, temperature, elevation, relative humidity, or atmospheric pressure Isolines - points of equal field values connected by lines

Examples: isotherms (temperature), isobars (pressure), and contour lines (elevation) Gradient - the rate of change in a measured value of a field from place to place

$$
\text { gradient }=\frac{\text { change in field value }}{\text { distance }}
$$

Example: Calculate the gradient between locations A and B

$$
\begin{aligned}
& \text { gradient }=\frac{\text { change in field value }}{\text { distance }} \\
& \text { gradient }=\frac{1500 \mathrm{ft}-1000 \mathrm{ft}}{1.5 \mathrm{mi}}=\frac{500 \mathrm{ft}}{1.5 \mathrm{mi}}=330 \mathrm{ft} / \mathrm{mi}
\end{aligned}
$$

Topic 2: Measuring Earth

Topic 2 Section 4

Mapping Earth's surface
Topographic maps - a model used to show elevation (sometimes called a contour map)
contour lines are isolines used to show elevation
Elevation - height above or below sea level
Contour interval - the difference in elevation between consecutive contour lines of differing elevation

- contour lines that cross a stream form an "arrow" that points upstream
- consecutive contour lines that form smaller and smaller ovals indicate a hilltop
- most contour maps show every fourth or fifth line thicker or bolder and show a number that gives the elevation for that line - index contour
- a BM \times symbol on a contour map is a benchmark that shows the position of a metal marker with the exact elevation for that location
- depression contour lines would look like hilltop lines except they will have small lines along the contour that point toward the center of the depression - when going uphill, the very first depression contour line marks the same elevation as the last regular contour line
Symbols on topographic maps - there are hundreds of symbols used to show natural and man-made features on topographic maps but there is always a key to help you
Most government maps (especially US Geological Survey, USGS) use the following:
- brown - contour lines for natural landforms
- red and black - human made boundaries, roads, structures
- blue - water features
- green - wooded areas
- purple - places that have been updated using aerial photographs

Horizontal distance on maps
Contours show elevations and depressions
A map scale shows horizontal distances
The scale shows the ratio between distance on the map and the actual distance Three methods to show scale:

- using words - one inch equals one mile
\bullet using fractions $-1 / 500,000$ or 1:500,000 (one inch on the map $=500,000$ inches)
- graphically - usually a tick mark picture near the bottom (this is the most common)

Hold a piece of paper on line XY and mark it, then move to the scale

Topic 2: Measuring Earth

Topographic gradient
Use a piece of paper to determine the distance from the scale
Read the contours to determine the change in elevation
Use the gradient formula
Example: find the gradient between points A and B on the map below

$A B$ is 10 miles using a piece of paper to mark $A B$ then compare it to the scale
The index contours show A is 250 feet and B is 500 feet for a difference of 250 feet

$$
\begin{aligned}
& \text { gradient }=\frac{\text { change in field value }}{\text { distance }} \\
& \text { gradient }=\frac{500 \mathrm{ft}-250 \mathrm{ft}}{10 \mathrm{mi}}=\frac{250 \mathrm{ft}}{10 \mathrm{mi}}=25 \mathrm{ft} / \mathrm{mi}
\end{aligned}
$$

Topographic profile
A profile shows a side or cut-away view of a landform (topo maps show the top view)

Mark elevations and distance on a strip of paper and then use the paper to fill the profile.

