\qquad
\qquad
A. Multiple Choice.

1. Given the balanced equation representing the reaction:

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

The mole ratio of NaOH to $\mathrm{Al}(\mathrm{OH})_{3}$ is
(1) $1: 1$
(2) $1: 3$
(3) $3: 1$
(4) $3: 7$
2. What is the gram-formula mass of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$?
(1) $146 \mathrm{~g} / \mathrm{mol}$
(2) $194 \mathrm{~g} / \mathrm{mol}$
(3) $214 \mathrm{~g} / \mathrm{mol}$
(4) $242 \mathrm{~g} / \mathrm{mol}$
3. What is the oxidation number of manganese in KMnO_{4} ?
(1) +7
(2) +2
(3) +3
(4) +4
4. Given the balanced equation representing the reaction:

$$
4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

If 107.9 g of Al react completely with 96.0 g of O_{2}, what mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ will be produced?
(1) 53.95 g
(2) 101.9 g
(3) 107.9 g
(4) 203.9 g
5. Given the balanced equation representing a reaction:

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

How many moles of O_{2} are required to completely react with 4.0 moles of Mg ?
(1) 1.0 moles
(2) 2.0 moles
(3) 6.0 moles
(4) 8.0 moles
6. Given the balanced equation representing the reaction between methane and oxygen:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

According to this equation, what is the mole ratio of oxygen to methane?
(1) $\frac{1 \text { gram O}}{2 \text { grams } \mathrm{CH}_{4}}$
(2) $\frac{2 \text { grams } \mathrm{O}_{2}}{1 \text { gram CH }}$
(3) $\frac{1 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{CH}_{4}}$
(4) $\frac{2 \text { moles } \mathrm{O}_{2}}{1 \text { mole CH }}$
7. Given the balanced equation representing a reaction:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

If 4.0 moles of KClO_{3} react completely, how many moles of O_{2} should be produced?
(1) 1.0 moles
(2) 2.0 moles
(3) 3.0 moles
(4) 6.0 moles
8. What is the total number of moles of CO_{2} represented by a 340 . gram sample?
(1) 7.72 moles
(2) 12.0 moles
(3) 16.0 moles
(4) 32.0 moles
9. The coefficients in a balanced chemical equation represent
(1) the mass ratios of the substances in the reaction
(2) the mole ratios of the substances in the reaction
(3) the total number of electrons in the reaction
(4) the total number of elements in the reaction
10. Given the balanced ionic equation:

$$
3 \mathrm{~Pb}^{2+}{ }_{\text {(aq) }}+2 \mathrm{Cr}_{(\mathrm{s})} \rightarrow 3 \mathrm{~Pb}_{(\mathrm{s})}+2 \mathrm{Cr}^{3+}{ }_{\text {(aq) }}
$$

What is the number of moles of electrons gained by 3.0 moles of lead ions?
(1) 5.0 mol
(2) 2.0 mol
(3) 3.0 mol
(4) 6.0 mol
B. Short Answer.

Base your answers to questions 11 through 13 on the information below
Baking soda, NaHCO_{3}, can be commercially produced during a series of chemical reactions called the Solvay process. In this process, $\mathrm{NH}_{3}(\mathrm{aq}), \mathrm{NaCl}_{(\mathrm{aq})}$, and other chemicals are used to produce $\mathrm{NaHCO}_{3 \text { (s) }}$ and $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq) }}$.

To reduce production costs, $\mathrm{NH}_{3}(\mathrm{aq})$ is recovered from the $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq) }}$ through a different series of reactions. This series of reactions can be summarized by the overall reaction represented by the balanced equation shown below.

$$
2 \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{CaO}_{(\mathrm{s})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CaCl}_{2(\mathrm{aq})}
$$

11. Determine the number of moles of $\mathrm{CaO}(\mathrm{s})$ that must be used to completely react with 4.00 moles of $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq). }}$. [2]
2.00 moles
12. Write the chemical name for baking soda. [2]
sodium hydrogen carbonate (sodium bicarbonate is acceptable)
13. Determine the mass of $\mathrm{NH}_{4} \mathrm{Cl}$ that represents 4.00 moles of $\mathrm{NH}_{4} \mathrm{Cl}$. [2]
213.97 g
14. Write the correct formula for barium chloride. [2]
BaCl_{2}
15. In the space below, balance the equation using the smallest whole-number coefficients. [2]

$$
2 \mathrm{Fe}_{(\mathrm{s})}+\ldots \mathrm{O}_{2(\mathrm{~g})}+\ldots \quad 2 \mathrm{H}_{2} \mathrm{O}_{(\theta)} \rightarrow \quad 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

Base your answers to questions 16 and 17 on the information below
Sodium bicarbonate decomposes when heated according to the balanced equation below.

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

16. Determine the gram-formula mass of NaHCO_{3}. [2]

$$
84.0069 \mathrm{~g} / \mathrm{mol}
$$

17. If 6.00 moles of NaHCO_{3} decompose, how many moles of CO_{2} should be produced

Base your answers to questions 18 through 20 on the information below
The nuts, bolts, and hinges that attach some gates to a playground fence can be made of iron. The iron can react with oxygen in the air. The unbalanced equation representing this reaction is shown below.

$$
\mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

18. In the space below, balance the equation for the reaction using the smallest whole-number coefficients. [2]

$$
-4 \mathrm{Fe}_{(\mathrm{s})}+\quad 3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow-\quad 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

19. Determine the change in oxidation state for oxygen in this reaction. [2]
from 0 to -2 or from O^{0} to O^{-2}
20. Explain, in terms of chemical activity, why copper would be a better choice than iron to make the nuts, bolts, and hinges. [2]
